Total Tayangan Halaman

Rabu, 18 Januari 2012

Sejarah Kosmologi

Matematika Astronomi : Sejarah Kosmologi

Empat ribu tahun yang lalu Babilonia mempunyai ahli astronomi terlatih. untuk memprediksi gerakan yangnyata dari sebuah bulan, bintang-bintang, planet-planet dan matahari di atas langit, dan juga memprediksi terjadinya gerhana. Akan tetapi, nenek moyang Yunani-lah yang pertama kali membuat sebuah model kosmologi untuk menginterpretasikan gerakan ini. Pada abad ke-4 sebelum Masehi, mereka mempunyai sebuah ide bahwasannya bintang-bintang berada pada sebuah lingkaran angkasa yang berotasi pada bola dunia setiap 24 jam, dan planet-planet, matahari, dan bulan, berpindah di antara bumi dan bintang-bintang.

Model ini di buat beberapa abad yang lalu, puncaknya pada abad ke-2 sesudah Masehi dengan ditemukannya sistem Ptolemi. Gerakan yang sempurna harus berada di dalam lingkaran, maka bintang-bintang dan planet-planet bergerak di dalam lingkaran. Untuk menghitung gerakan yang komplek dari planet-planet digunakan epicides maka perpindahan planet-planet di lingkaran melalui lingkaran sekitar arah bumi.

Meskipun hal ini adalah sebuah struktur yang kompleks. Ptolemy membuat sebuah model yang berhasil memproduksi gerakan yang terjadi pada sebuah planet, pada abad 16. Ketika Copernicus mengusulkan sebuah sistem heliosentrik, dia tidak bisa menyesuaikan dengan keakuratan sistem pusat bumi yang dimiliki Ptolemy. Ptolemy memmbuat sebuah model dimana bumi berotasi dan bersama-sama dengan planet lainnya berpindah dalam sebuah orbit sirkular matahari. Akan tetapi, bukti penelitian pada waktu itu sangat mendukung pada sistem Ptolemaic.

Ada banyak alasan lainnya mengapa para ahli astronomi menolak dugaan Copernicus yang menyatakan bahwa bumi mengorbit pada matahari. Tycho Brane seorang astronomi terbesar pada abad 16 menyatakan bahwa jika bumi mengitari matahari, maka posisi relatif bintang-bintang akan berubah seperti yang terlihat dari bagian-bagian yang berbeda pada orbit bumi. Akan tetapi, tidak ada bukti dalam hal ini, disebut dengan parallax. Walaupun bumi tetap atau tidak, bintang-bintang akan menjadi semakin jauh secara mengejutkan.

Dengan bantuan dari sebuah penemuan terbaru, yaitu teleskop, di awal abad 17 Galileo menyatakan bahwa suatu hal yang fatal pada anggapan bahwa bumi adalah pusat dari alam ini. Dia menemukan bulan mengorbit pada planet Jupiter. Dan jika bulan dapa mengorbit pada planet lain, mengapa planet-planet itu tidak mengorbit pada matahari ?

Pada waktu yang sama, Tycho Brane asisten Keppler menemukan kunci untuk membuat sebuah model heliocentrik. Planet-planet berpindah dalam bulatan panjang, bukan lingkaran yang sempurna, seperti matahari. Terakhir Newton menunjukkan bahwa gerakan berbentuk bulat panjang di jelaskan dengan hukum kuadrat berbalik pada kekuatan gravitasi.

Tapi banyaknya penelitian parallax dalam posisi yang menarik dari sebuah bintang-bintang seperti bumi yang berotasi pada matahari, mengindikasikan bahwa bintang-bintang mempunyai jarak yang sangat jauh dari matahari. Kosmos kelihatan menjadi sebuah laut yang luas terdiri dari bintang-bintang, jika dilihat dengan bantuan teleskop. Galileo menemukan 4 ribu bintang-bintang baru di mana mereka tidak dapat dilihat oleh mata telanjang. Newton menyimpulkan bahwa alam merupakan sebuah lautan bintang-bintang yang abadi dan tak terbatas, seperti matahari kita.

Tidak sampai pada abad ke-19 ketika para ahli astronomi dan matematikawan Bessel pada akhirnya dapat mengukur jarak ke bintang dengan menggunakan Parallax. Bintang yang terdekat (selain dari matahari) sekitar 25 juta, juta mil jauhnya ! ( dengan membandingkan matahari yang jauhnya 93 juta mil dari bumi)

Kebanyakan dari bintang-bintang yang dpaat kita lihat terdapat di Milky Way-kumpulan bintang-bintang yang terang yang terbentang di langit pada malam hari. Kant dan yang lainnya menunjukkan bahwa Miky Way merupakan sebuah lensa yang disebut 'pulau dunia' atau galaksi, dan di atas Milky Way masih ada banyak galaksi lain.

Seperti bintang-bintang dan planet-planet, para ahli astronomi menemukan titik kabur cahaya pada malam hari, mereka menyebutnya dengan nebula. beberapa ahli astronomi berpendapat bahwa ini adalah galaksi yang jauh. Pada tahun 1920 ahli astronomi Amerika Hubble menemukan beberapa nebula di mana ukurannya sama seperti bintang jauh dalam Milky Way.

Hubble juga membuat penemuan yang luar biasa bahwa galaksi terlihat berpindah menjauhi kami, dengan sebuah kecepatan yang seimbang sesuai jaraknya dari kami. Ini kelihatannya lebih realistas dan merupakan penjelasan yang nyata dalam penemuan Einstein dengan teori Relativitas : Alam semesta kami adalah luas !

mungkin saja, Einstein telah memprediksi bahwa alam semesta ini luas, sesudah mengajukan teori pertamanya di tahun 1915. Masalah ini cenderung pada jatuh secara bersama-sama karena gravitasi maka tidaklah mungkin untuk menyatakan bahwa alam semesta itu tidak bergerak. Einstein menyadari ia dapat menggunakan ketetapan arbitrer pada persamaan matematikanya, yang dapat menyeimbangkan kekuatan gravitasi dan tidak mengikutsertakan galaksi. Hal ini dikenal dengan ketetapan kosmologi. Sesudah adanya penemuan yang menyatakan bahwa alam itu luas, Einstein mengumumkan bahwa ketepatan kosmologi adalah kekeliruan terbesar dalam hidupnya.

Ahli matematika meteorologi dari Rusia Friedmann mengatakan di tahun 1917 bahwa Einstein menghitung sebuah gambaran dari sebuah alam yang luas. Solusi ini mencantumkan bahwa alam lahir dari pada satu momen, sekitar sepuluh ribu juta tahun lalu. Semua itu, bahkan alam semesta sendiri, tercipta hanya pada satu ketika. Astronom Inggris Fred Hoyle menyebutnya sebagai "Big Bang".

Ada sebuah teori yang menjadi saingan, disebut dengan Teori Steady State diajukan oleh Bondi, Gold, dan Hoyle yang dibuat untuk menjelaskan perluasan alam raya. Hal ini membutuhkan penciptaan sesuatu yang bersambung untuk membuat galaksi-galaksi baru sebagai perluasan alam raya, menyakinkan bahwa alam raya itu dapat bertambah luas tetapi selalu tetap dalam waktu.

untuk beberapa tahun hal ini hayalah terlihat sebagai sesuatu yang akademis, dimana alam raya abadi dan dapat berubah, atau hanya eksis untuk jangka waktu yang terbatas. Tapi sebuah pukulan telak memruntuhkan model steady state ketika pada tahun 1965 Penzias dan Wislson menemukan sebuah radiasi mikrowave kosmik. Hal ini menunjukkan hasil radiasi dari sebuah ledakan besar yang panas, dimana diprediksi oleh Alpher dan Hermann di tahun 1949.

Menindaklanjuti dari kerja Gamow, Alpher dan Hermann ditahun 1940, teorinya adalah menghitung kelebihan relatif dari Hidrogen dan Helium yang mungkin dihasilkan pada saat ledakan Big Bang dan menemukan hal itu seseuai dengan pengamatan. Ketika kelebihan relatif cahaya lain dihitung keduanya konsisten dengan nilai yang diamati.

Sejak 1970, banyak ahli kosmologi yang menerima model Big Bang dan mulai bertanya lebih spesifik, tetapi tetap fundamental, pertanyaannya mengenai alam raya ini. Mengapa galaksi-galaksi dan sekelompok galaksi yang kami ini diluar dari bentuk perluasan sebelumnya. Alam raya ini terbuat dari apa ? bagaimana kami mengetahui bahwa tidak ada lubang hitam atau bentuk-bentuk hitam di atas sana yang tidak bersinar seperti bintang ? relativitas umum menyatakan bentuk kurva ruang waktu, lalu bagaimanakah bentuk alam raya ? apakah ada sebuah kosmologi yang tetap sesudah itu ?

Kami hanya akan menjawab beberapa pertanyaan saja. Latar belakang radiasi gelombang mikro kosmik memainkan peranan penting dengan memberikan gambaran tentang alam semesta hanya seratus ribu tahun setelah Bing Bang. Hal ini adalah urutan yang luar biasa, pada tahun 1992 satelit Cosmic Background Explorer NASA mendeteksi anisotropies pertama pada latar belakang radiasi. Ada sedikit fluktuasi pada suhu radiasi, sekitar satu bagian per 500.000, mungkin awal dari terbentuknya galaksi.

Sejak awal 1980, ada sebuah penelitian yang menarik dari bentuk fisik awal alam raya. Teknologi baru dan penelitian dengan satelit, seperti teleskop Hubbie memberikan gambaran dari alam raya ini, menginspirasikan teori baru untuk meghasilkan lebih banyak model-model yang lebih hebat.

Sumber :
Haza'a, Salah Kaduri. dkk, 2004. Sejarah Matematika Klasik dan Modern. Yogyakarta : Universitas Ahmad Dahlan Press.

Materi Antar Bintang

Materi Antar Bintang

Ketika sedang mengamati indahnya langit malam, pernahkah Anda bertanya-tanya tentang kekosongan pada ruang antar bintang. Apakah sama sekali tidak ada apa-apa di sana? Benarkah di alam semesta seluas ini, dengan jarak antar bintang yang berkisar ribuan atau bahkan) jutaan tahun cahaya, hanya diisi ruang kosong? Kalau Anda pernah menanyakan hal tersebut, tahukah Anda apa jawabannya?Sebenarnya, ruang antar bintang itu tidak kosong. Materi antar bintang (interstellar matter) adalah sebutan untuk pengisi kekosongan itu. Lalu, seberapa penting keberadaan materi antar bintang (MAB)? Sebenarnya penting sekali, karena sifat materi penyusunnya mempengaruhi apa yang kita pelajari dalam astronomi. Dengan mempelajari MAB, kita jadi tahu bagaimana MAB meredupkan, memerahkan, atau bahkan menghalangi cahaya bintang. Selain itu juga MAB memberikan petunjuk mengenai komposisi materi pembentukan bintang, karena bintang lahir dari MAB ini. Artikel kali ini hanya akan membahas pengaruh MAB terhadap cahaya bintang.
Secara umum terdapat dua jenis penyusun materi antar bintang, yang pertama adalah debu antar bintang dan yang kedua adalah gas. Masing-masing jenis materi ini memberikan pengaruh yang berbeda ketika diamati. Berikut ini akan saya bahas masing-masing dalam dua poin besar.
A. Debu Antar Bintang
Materi ini jauh lebih kecil kelimpahannya dibandingkan dengan gas antar bintang, namun pengaruhnya terhadap berkas cahaya visual lebih besar. Hal ini disebabkan ukuran partikelnya yang besar (dalam orde 1/1000 mm), bandingkan dengan panjang gelombang cahaya tampak (1/20000 mm), sehingga materi ini cenderung untuk menyerap dan menghamburkan berkas cahaya. Debu antar bintang ini tersusun dari partikel-partikel es, karbon, atau silikat. Karakteristik debu ini menghasilkan bermacam efek terhadap cahaya bintang, yang akan dijelaskan sebagai berikut.
i. Nebula Gelap
Ada daerah tertentu di ruang antar bintang yang memiliki kepadatan debu yang sangat tinggi, sehingga cukup untuk menjadi awan (nebula) yang kedap cahaya. Walaupun kepadatan partikelnya masih jauh lebih rendah dari pada di Bumi, namun besarnya awan ini mengakibatkan terhalangnya cahaya bintang. Celah gelap memanjang di daerah Cygnus dan Horsehead Nebulae (Kepala Kuda) di Orion adalah contoh nebula gelap, yang menghalangi datangnya berkas cahaya bintang ke arah pengamat.
Horsehead Nebula
Horsehead Nebula (Sumber: APOD)
ii. Efek Redupan
Sekumpulan kecil debu selain di nebula gelap dapat juga memberikan efek meredupnya cahaya bintang sekitar 1 magnitudo setiap 1 kiloparsek yang ditempuh cahaya tersebut. Hal ini memunculkan permasalahan ketika akan ditentukan jarak sebuah bintang. Karena dalam menentukan jarak, diperlukan perbandingan antara magnitudo semu dan mutlak. Harga magnitudo semu yang didapat akan mengalami kesalahan akibat dari efek redupan tersebut, sehingga menyebabkan kesalahan pada nilai jarak bintang. Untuk mengatasinya, perlu diketahui terlebih dahulu seberapa besar efek redupan yang dialami cahaya bintang tersebut.
iii. Efek Pemerahan
Penghamburan berkas cahaya tidak sama di semua panjang gelombang. Karena ukuran partikel debu yang kecil, maka hanya gelombang elektromagnetik yang mempunyai panjang gelombang yang pendek yang lebih terkena efek penghamburan ini. Artinya, hanya cahaya ungu dan biru yang paling terkena efeknya. Sementara merah dan jingga tidak mengalami halangan yang berarti ketika melintasi debu antar bintang. Akibat dari kekurangan cahaya ungu dan biru ini, cahaya yang sampai di Bumi akan tampak merah. Hal inilah yang disebut sebagai efek pemerahan.
iv. Nebula Pantulan
Trifid Nebula
Trifid Nebula/M20 (Sumber: APOD)
Hamburan oleh debu antar bintang, terutama cahaya biru, terkadang menerangi daerah di sekitarnya. Akibatnya, awan debu antar bintang ini akan tampak biru karena cahaya bintang di belakangnya melintasi awan debu ini. Contoh dari nebula pantulan ini adalah gugus bintang Pleiades di Taurus serta Trifid Nebulae di Sagittarius.
B. Gas Antar Bintang
Materi utama penyusun gas antar bintang ini adalah Hidrogen dengan sedikit Helium. Kepadatan gas dalam suatu ruang antar bintang biasanya mencapai 1 atom/cm3 , sementara di beberapa tempat, kepadatan partikel gas antar bintang dapat mencapai 105 atom/cm3 . Namun kerapatan ini masih jauh lebih rendah daripada kepadatan gas di Bumi, 1019 atom/cm3. Nebula gas ini dibagi dua, daerah H I dan H II.
i. Daerah H II, Nebula Emisi
Jika bintang muda dan panas (golongan B dan O) terletak dekat dengan nebula gas, maka pancaran ultraviolet dari bintang tersebut akan mengionisasi gas hidrogen yang terkandung di dalam nebula itu. Ketika inti atom hidrogen menangkap elektron yang lain, pada saat yang bersamaan dipancarkan pula radiasi elektromagnetik, dalam panjang gelombang cahaya tampak. Akibatnya, cahaya uv dari bintang diubah menjadi cahaya tampak oleh nebula gas ini. Jika dilihat spektrumnya, nebula ini memberikan garis emisi. Contoh nebula jenis ini adalah Nebula Orion di daerah pedang Orion, Nebula Lagoon dan Nebula Trifid di Sagittarius.
Great Orion Nebula
Great Orion Nebula (Sumber: APOD)
Ada dua macam lagi nebula emisi yang berbeda dengan yang disebut di atas. Kedua macam nebula ini dibentuk dalam evolusi bintang. Yang pertama adalah planetary nebula, yaitu ketika sebuah bintang berada dalam evolusi tahap akhirnya, melontarkan selubung gas yang didorong dari bintang akibat tekanan dalamnya. Selama proses ini, gelombang uv dari bintang meradiasi selubung tersebut, sehingga terjadi peristiwa yang sama seperti penjelasan sebelumnya. Akibatnya terlihat sebuah bintang di tengah-tengah awan gas. Contoh planetary nebula jenis ini adalah Nebula Cincin di Lyra.
Planetary Nebula
Planetary Nebula (Sumber: APOD)
Yang kedua adalah sisa ledakan supernova. Gas yang tersisa setelah ledakan bintang (supernova) menerima pancaran energi dari pusat nebula. Contohnya, Cygnus Loop.
Lagoon Nebula (Sumber: APOD)
Cygnus Loop (Sumber: APOD)
ii. Daerah H I, Awan Hidrogen Netral
Di daerah awan gas ini, tidak ada sumber gelombang uv yang dapat mengionisasi hidrogennya. Awan ini gelap, dingin dan transparan. Pengamatan objek ini bergantung pada sifat yang dimiliki oleh inti atom hidrogennya.
Diketahui bahwa pada elektron dan inti pada sebuah atom memiliki momentum spin. Keduanya dapat memiliki spin yang searah atau berlawanan. Dalam keadaan spin searah, atom memiliki tingkat energi yang lebih tinggi daripada spin berlawanan. Jika sebuah atom berada dalam keadaan spin searah, maka setelah 106 tahun atom tersebut akan berubah ke tingkat energi yang lebih rendah ( spin berlawanan ). Proses ini, disebut ’’electron spin flop’’, akan menghasilkan pancaran energi kuantum dengan panjang gelombang setara dengan gelombang radio, 21 cm. Maka, pengamatan yang telah dilakukan pun lebih banyak dilakukan oleh astronom radio.
iii. Molekul antar bintang
Pengamatan radio telah menghasilkan penemuan sejumlah senyawa dalam sebuah awan gas. Hal ini dapat diketahui dari sifat energi elektromagnetik yang dipancarkan maupun diserap oleh awan gas tersebut. Diantara yang diketahui adalah molekul-molekul organik, molekul yang menjadi dasar kehidupan.. Beberapa diantarnya adalah hidroksil radikal, amonia, air, metil alkohol, metil sianida, formaldehid, hidrogen sianida, dan karbon monoksida. Kelimpahan molekul-molekul ini jauh lebih kecil dari hidrogen.

Evolusi Bintang

Evolusi Bintang

Seperti manusia, bintang juga mengalami perubahan tahap kehidupan. Sebutannya adalah evolusi. Mempelajari evolusi bintang sangat penting bagi manusia, terutama karena kehidupan kita bergantung pada matahari. Matahari sebagai bintang terdekat harus kita kenali sifat-sifatnya lebih jauh.
Dalam mempelajari evolusi bintang, kita tidak bisa mengikutinya sejak kelahiran sampai akhir evolusinya. Usia manusia tidak akan cukup untuk mengamati bintang yang memiliki usia hingga milyaran tahun. Jika demikian tentunya timbul pertanyaan, bagaimana kita bisa menyimpulkan tahap-tahap evolusi sebuah bintang?  
Pertanyaan tersebut dapat dijawab dengan kembali menganalogikan bintang dengan manusia. Jumlah manusia di bumi dan bintang di angkasa sangat banyak dengan usia yang berbeda-beda. Kita bisa mengamati kondisi manusia dan bintang yang berada pada usia/tahapan evolusi yang berbeda-beda. Ditambah dengan pemodelan, akhirnya kita bisa menyusun teori evolusi bintang tanpa harus mengamati sebuah bintang sejak kelahiran hingga akhir evolusinya.
Kelahiran bintang
Bintang lahir dari sekumpulan awan gas dan debu yang kita sebut nebula. Ukuran awan ini sangat besar (diameternya mencapai puluhan SA) tetapi kerapatannya sangat rendah. Awal dari pembentukan bintang dimulai ketika ada gangguan gravitasi (misalnya, ada bintang meledak/supernova), maka partikel-partikel dalam nebula tersebut akan bergerak merapat dan memulai interaksi gravitasi di antara mereka setelah sebelumnya tetap dalam keadaan setimbang. Akibatnya, partikel saling bertumbukan dan temperatur naik.
Eagle Nebula, tempat kelahiran bintang (Sumber: Hubblesite)
Eagle Nebula, tempat kelahiran bintang (Sumber: Hubblesite)
Semakin banyak partikel yang merapat berarti semakin besar gaya gravitasinya dan semakin banyak lagi partikel yang ditarik. Pengerutan awan ini terus berlangsung hingga bagian intinya semakin panas. Panas tersebut dapat mendorong awan di sekitarnya. Hal ini memicu terjadinya proses pembentukan bintang di sekitarnya. Demikian seterusnya hingga terbentuk banyak bintang dalam sebuah awan besar. Maka tidaklah heran jika kita mengamati sekelompok bintang yang lahir pada waktu yang berdekatan di lokasi yang sama. Kelompok bintang inilah yang biasa kita sebut dengan gugus.
Akibat pengerutan oleh gravitasi, temperatur dan tekanan di dalam awan naik sehingga pengerutan melambat. Di tahap ini, bola gas yang terbentuk disebut dengan proto bintang. Apabila massanya kurang dari 0,1 massa Matahari, maka proses pengerutan akan terus terjadi hingga tekanan dari pusat bisa mengimbanginya. Pada saat tercapai kesetimbangan, temperatur di bagian pusat awan itu tidak cukup panas untuk dimulainya proses pembakaran hidrogen. Maksud dari pembakaran di sini adalah reaksi fusi atom hidrogen menjadi helium. Awan ini pun gagal menjadi bintang dan disebut dengan katai gelap.
Jika massanya lebih dari 0,1 massa Matahari, bagian pusat proto bintang memiliki temperatur yang cukup untuk memulai reaksi fusi saat dirinya setimbang. Reaksi ini akan terus terjadi hingga helium yang sudah terbentuk mencapai 10 – 20 % massa bintang. Setelah itu pembakaran akan terhenti, tekanan dari pusat menurun, dan bagian pusat ini runtuh dengan cepat. Akibatnya temperatur inti naik dan bagian luar bintang mengembang. Saat ini, bintang menjadi raksasa dan tahap pembakaran helium menjadi karbon pun dimulai. Di lapisan berikutnya, berlangsung pembakaran hidrogen menjadi helium. Setelah ini kembali akan kita lihat bahwa evolusi bintang sangat bergantung pada massa.
Untuk bintang bermassa kecil (0,1 – 0,5 massa Matahari), proses pembakaran hidrogen dan helium akan terus berlangsung sampai akhirnya bintang itu menjadi katai putih. Sedangkan pada bintang bermassa 0,5 – 6 massa Matahari, pembakaran karbon dimulai setelah helium di inti bintang habis. Proses ini tidaklah stabil, akibatnya bintang berdenyut. Bagian luar bintang mengembang dan mengerut secara periodik sebelum akhirnya terlontar membentuk planetary nebula. Bagian bintang yang tersisa akan mengerut dan membentuk bintang katai putih.
Berikutnya adalah bintang bermassa besar (lebih dari 6 massa Matahari). Di bintang ini pembakaran karbon berlanjut hingga terbentuk neon. Lalu neon pun mengalami fusi membentuk oksigen. Begitu seterusnya hingga secara berturut-turut terbentuk silikon, nikel, dan terakhir besi. Kita bisa lihat di diagram penampang bintang di bawah ini, bahwa reaksi fusi sebelumnya tetap terjadi di luar lapisan inti. Sehingga ada banyak lapisan reaksi fusi yang terbentuk ketika di bagian pusat bintang sedang terbentuk besi.
Lapisan-lapisan reaksi fusi (Sumber: Wikipedia)
Lapisan-lapisan reaksi fusi (Sumber: Wikipedia)
Evolusi Lanjut
Setelah reaksi yang membentuk besi terhenti, tidak ada proses pembakaran selanjutnya. Akibatnya, tekanan menurun dan bagian inti bintang memampat. Karena begitu padatnya, jarak antara neutroon dan elektron pun mengecil sehingga elektron bergabung dengan neutron dan proton. Peristiwa ini menghasilkan tekanan yang sangat besar dan mengakibatkan bagian luar bintang dilontarkan dengan cepat. Inilah yang disebut dengan supernova.
Apa yang terjadi setelah supernova bergantung pada massa bagian inti bintang yang tadi terbentuk. Apabila di bawah 5 massa Matahari (batas massa Schwarzchild), supernova menyisakan bintang neutron. Disebut demikian karena partikel dalam bintang ini hanya neutron. Bintang neutron biasanya terdeteksi sebagai pulsar (pulsating radio source, sumber gelombang radio yang berputar). Pulsar adalah bintang yang berputar dengan sangat cepat, periodenya hanya dalam orde detik. Putarannya itulah yang menyebabkan pulsasi pancaran gelombang radionya.
Diagram evolusi berbagai bintang (Sumber: Chandra Harvard)
Diagram evolusi berbagai bintang (Sumber: Chandra Harvard)
Di atas 5 massa Matahari, gaya gravitasi di inti bintang begitu besarnya sehingga dirinya runtuh dan kecepatan lepas partikelnya melebihi kecepatan cahaya. Objek seperti ini disebut dengan lubang hitam. Tidak ada objek yang sanggup lepas dari pengaruh gravitasinya, termasuk cahaya sekalipun. Makanya benda ini disebut lubang hitam, karena tidak memancarkan gelombang elektromagnetik. Satu-satunya cara untuk mendeteksi keberadaan lubang hitam adalah dari interaksi gravitasinya dengan benda-benda di sekitarnya. Pusat galaksi kita adalah salah satu lokasi ditemukannya lubang hitam. Kesimpulan ini diambil karena bintang-bintang di pusat galaksi bergerak dengan sangat cepat, dan kecepatannya itu hanya bisa ditimbulkan oleh gaya gravitasi yang sangat kuat, yaitu oleh sebuah lubang hitam.
Hingga saat ini, pengamatan terhadap bintang-bintang masih terus dilakukan. Teori evolusi bintang di atas bisa saja berubah kalau ada bukti-bukti baru. Tidak ada yang kekal dalam sains, dan tidak ada kebenaran mutlak. Apa yang menjadi kebenaran saat ini bisa saja terbantahkan di kemudian hari. Itulah uniknya sains: dinamis.

Penemu sinar kosmik

Victor Francis Hess : Penemu Sinar Kosmik PDF Print E-mail
Victor Francis HessVictor Francis Hess (1883-1964) adalah ahli fisika Austria, penemu sinar kosmik (1912), doktor, dan guru fisika Amerika Serikat. Ia mendapat hadiah Nobel untuk fisika untuk pada tahun 1936 karena menemukan sinar kosmik tersebut. Sinar kosmik adalah radiasi energi tinggi yang berasal dari angkasa luar.
Hess lahir di Waldstein, Styria, Austria, dari pasangan Vinzens Hess dan Serafine Edle von Grossbauer-Waldstätt, pada tanggal 24 Juni 1883 dan meninggal di Mount Vernon, New York, pada tanggal 17 Desember 1964 pada umur 81 tahun. Ayahnya penjaga hutan. Tapi Hess dapat mengikuti kuliah di Universitas Graz dan Wina sampai mendapat gelar doktor pada tahun 1906 pada umur 23 tahun. Kemudian ia mengadakan riset di bidang radio aktivitas dan listrik di atmosfer.

    Pada akhir tahun 1800-an, untuk mempelajari radio aktivitas, para ahli fisika menggunakan elektroskop. Elektroskop adalah alat untuk menyelidiki apakah sebuah benda bermuatan listrik atau tidak. Alat itu juga dipakai untuk mengetahui sejumlah radiasi. Bila terdapat radio aktivitas, elektroskop selalu kehilangan muatan listriknya. Maka para ahli fisika lalu melindungi elektroskop agar tidak kehilangan muatan listriknya. Tapi berapa rapat dan tebalnya pelindung itu, elektroskop lambat laun juga kehilangan muatannya. Mula-mula para ahli fisika menyimpulkan bahwa di permukaan tanah terdapat radio aktivitas. Jadi makin tinggi dari tanah makin sedikit radiasinya.

    Pada tahun 1911-1912 Hess naik balon sampai 10 kali mencapai ketinggian 5.000 meter. Ia membawa elektroskop dan perlengkapan lainnya. Ia yakin bahwa makin tinggi dari tanah elektroskop makin lambat kehilangan muatan. Tapi apa yang terjadi? Ia terkejut sekali ketika mengetahui bahwa dugaannya meleset sama sekali. Makin tinggi balon  naik ke atmosfer, makin cepat elektroskop kehilangan muatan. Mula-mula ia mengira hal ini disebabkan oleh radiasi (sinar) matahari. Maka ia naik balon pada malam hari. Hasilnya sama saja. Maka ia berkesimpulan bahwa ada partikel yang jatuh ke bumi yang berasal dari luar angkasa. Partikel-partikel itulah yang menyebabkan elektroskop kehilangan muatan listriknya. Robert A. Millikan, ahli fisika Amerika Serikat, membenarkan pendapat Hess. Ia menamakan hujan partikel itu sinar kosmik. Tapi baik Hess maupun Millikan belum tahu apa sebenarnya sinar kosmik itu.

    Setelah Hess menemukan sinar kosmik, para ahli fisika mulai sibuk mempelajari sinar tersebut, antara lain Carl David Anderson, ahli fisika Amerika Serikat, dan Cecil F.Powell, ahli fisika Inggris. Pada tahun 1930 Anderson mempelajari sinar gamma dan sinar kosmik. Dua tahun kemudian (1932) ia berhasil menemukan positron atau antielektron. Karena penemuannya ini ia mendapat Hadiah Nobel untuk fisika (1936). Tapi sinar kosmik masih tetap merupakan teka-teki. Maka Powell pada tahun 1939 mengirimkan pelat-pelat foto yang dilumasi emulsi yang sangat peka ke atmosfer dengan balon. Ia seolah-olah memotret sinar kosmik. Setelah menganalisis hasil pemotretannya pada tahun 1947 ia menemukan meson dalam sinar kosmik. Zaman sekarang banyak orang sudah tahu bahwa sinar kosmik terdiri dari proton, netron, elektron, positron, foton, dan meson.
 
 
Dikirim oleh : Fairuz Salwina
 

Teori Nebula Laplace


Teori Nebula Laplace
Ada beberapa teori yang menginspirasi terbentuknya teori Laplace, dimulai dari filsuf Perancis, Renè Descartes (1596-1650) yang percaya bahwa angkasa terisi oleh “fluida alam semesta” dan planet terbentuk dalam pusaran air. Sayangnya teori ini tidak didukung dasar ilmiah.

Seratus tahun kemudian Immanuel Kant (1724-1804) menunjukkan adanya awan gas yang berkontraksi dibawah pengaruh gravitasi sehingga awan tersebut menjadi pipih. Ide ini didasarkan dari teori pusaran Descartes tapi fluidanya berubah menjadi gas. Setelah adanya teleskop, William Herschel (1738-1822) mengamati adanya nebula yang ia asumsikan sebagai kumpulan bintang yang gagal. Tahun 1791, ia melihat bintang tunggal yang dikelilingi halo yang terang. Hal inilah yang memberinya kesimplan bahwa bintang terbentuk dari nebula dan halo merupakan sisa nebula.

Dari teori-teori ini Pierre Laplace (1749-1827) menyatakan adanya awan gas dan debu yang berputar pelan dan mengalami keruntuhan akibat gravitasi. Pada saat keruntuhan, momentum sudut dipertahankan melalui putaran yang dipercepat sehingga terjadi pemipihan. Selama kontraksi ada materi yang tertinggal kedalam bentuk piringan sementara pusat massa terus berkontraksi. Materi yang terlepas kedalam piringan akan membentuk sejumlah cincin dan materi di dalam cincin akan mengelompok akibat adanya gravitasi. Kondensasi juga terjadi di setiap cincin yang menyebabkan terbentuknya sistem planet. Materi di dalam awan yang runtuh dan memiliki massa dominan akan membentuk matahari.

Namun menurut Clerk Maxwell (1831-1879) letak permasalahan teori ini cincin hanya bisa stabil jika terdiri dari partikel-partikel padat bukannya gas. Menurut Maxwell cincin tidak bisa berkondensasi menjadi planet karena gaya inersianya akan memisahkan bagian dalam dan luar cincin. Seandainya proses pemisahan bisa terlewati, massa cincin masih jauh lebih masif dibanding massa planet yang terbentuk.

Permasalahan lain muncul dari distribusi momentum sudut dimana tidak ada mekanisme tertentu yang bisa menjelaskan bahwa keberadaan materi dalam jumlah kecil, yang membentuk planet, bisa memiliki semua momentum sudutnya. Seharusnya sebagian besar momentum sudut berada di pusat objek. Jika momentum sudut intrinsik dari materi luar bisa membentuk planet, maka kondensasi pusat tidak mungkin runtuh untuk membentuk bintang,

Minggu, 15 Januari 2012

inilah 10 kisah ufo terbesar dan tak dapat terpecahkan


inilah 10 Kisah UFO Terbesar & Tak Terpecahkan


teamtalk.com
INILAH.COM, Jakarta – Fenomena penampakan UFO selalu menjadi bahan yang hangat untuk dibacarakan. Hingga kini, terdapat 10 kisah UFO terbesar yang tak terpecahkan hingga kini.
Foo Fighter
Selama Perang Dunia II, pilot perang Amerika, Inggris, Jerman dan Prancis melaporkan melihat bulatan raksasa bercahaya di langit yang tak terjelaskan. Bulatan ini kemudian diberi nama ‘foo fighter’. Asal muasal nama ini sendiri masih belum diketahui namun, beberapa orang memiliki teori, nama ini muncul dari kata Jerman untuk ‘feuer’.
Insiden Hopeh, China
Foto ini diambil pada 1942 yang kemudian ditemukan dalam sebuah album foto. Pemilik album ini mengklaim membeli foto ini dari fotografer jalanan di China. Beberapa orang mengklaim, UFO tampak seperti topi atau burung dan lainnya mengatakan ini merupakan piring terbang.
Pria berbaju hitam
Pada 1947, seorang nelayan menglaim melihat UFO berbentuk donat terbang di udara di atas Pulau Maury di Puget Sound, Washington, Amerika Serikat (AS). Salah satu obyek ini menjatuhkan puing ke dek kapal dan melukai putera pemilik kapal dan anjingnya.
Pagi berikutnya, nelayan ini mengklaim seorang pria berbaju hitam muncul di depan pintunya dan mengancam keluarganya akan berada dalam bahaya jika ia berbicara pada siapa pun mengenai insiden ini.
Penampakan piring terbang pertama
Hanya beberapa hari setelah insiden pria berbaju hitam, Kenneth Arnold melaporkan melihat UFO terbang di udara dekat Mt. Ranier, Washington. Media kemudian menggunakan ‘piring terbang’ untuk menggambarkan obyek itu. Arnold kemudian menjadi semi-selebriti di dunia paranormal.
Hilangnya Felix Moncla
Sementara mengejar UFO di Superior Lake pada 1953, pilot angkatan udara (AU) AS Felix Moncla menghilang begitu saja. Kendali darat mengaku mendeteksi Moncla dan UFO di radar dan menyaksikan kedua kedipan pada radar itu ‘menyatu kemudian menghilang’. Pada 1968, bagian pesawat ditemukan di danau namun bagian itu tak pernah dipastikan benar merupakan bagian pesawat Moncla atau bukan.
Insiden Kecksburg
Pada malam 9 Desember 1965, warga Kecksburg, Pennsylvania mengklaim ada benda besar berbentuk biji pohon ek dengan tulisan hieroglyphic jatuh di hutan. Militer dengan cepat mengelilingi area itu.
Pada 2005, NASA menjelaskan obyek yang jatuh itu mungkin merupakan puing dari satelit Rusia namun saksi mengklaim penjelasan NASA tak konsisten dengan apa yang mereka saksikan.
Penampakan UFO Jimmy Carter
Presiden Jimmy Carter mengaku melihat obyek putih terang yang kemudian berubah warna dari biru, merah dan kembali lagi ke putih sebelum akhirnya menjauh ke Leary, Georgia pada 1969.
Meski kemudian ia mengklaim tak menyangka obyek itu adalah pesawat alien, ia mengatakan, “Satu hal pasti, saya tak pernah meremehkan orang yang mengaku melihat UFO di langit”. Jika saya menjadi presiden, kata Carter pada 1976, “Saya akan menerbitkan semua informasi di Negara ini mengenai penampakan UFO pada warga dan ilmuwan”.
Pria bengis
Meski pria bengis ini pertama ditemui setelah penampakan UFO pada 1966 di Elizabeth, New Jersey, ia muncul di seluruh bagian AS setelah ada penampakan UFO dan mengatakan pada saksi namanya ‘Indrid Cold’. Para saksi menggambarkan pria ini bertubuh tinggi yang mirip manusia namun tak memiliki hidung atau telinga, hanya mata dan senyuman lebar.
Bandara O’hare
Pada Selasa 7 November 2006, FAA menerima laporan 12 karyawan penerbangan di O’Hare, Chicago melihat pesawat piring terbang besi melintasi salah satu gerbang keberangkatan. Menurut saksi, cakram ini melayang selama dua menit.
Namun, saat orang akan menyelidikinya, obyek ini langsung menuju awan dan menghilang. FAA menyimpulkan, hal ini merupakan trik cuaca pada mata manusia namun saksi bersikeras menyatakan itu adalah UFO.
Turki
Penjaga malam di Turki bernama Yalcin Yalman menyaksikan sejumlah besar UFO saat bertugas pada 2008 dan merekam kejadian itu. Ia menyediakan Sirius UFO Space Research Center video berdurasi dua setengah jam. Video itu sendiri dianggap sebagai ‘gambar UFO paling penting yang pernah ada’ meski kebenarannya perlu dibuktikan.